Tak Hur takh0404@yonsei.ac.kr

Profile

First year Ph.D. student at Yonsei University. My research interests focus on Quantum Machine Learning, Quantum Learning Theory, and Quantum Simulation.

Education

Yonsei University	Korea
PhD in Statistics and Data Science	March, 2023 –
Imperial College London	United Kingdom
Msci Physics with Theoretical Physics	Sept, 2021 – August, 2022
Imperial College London	United Kingdom
Bsc Physics with Theoretical Physics	Sept, 2017 – August, 2021

Publications

- [1] **Hur, T.** Kim, L. Park, D. (2022). "Quantum convolutional neural network for classical data classification". *Quantum Machine Intelligence 4, 3*.
- [2] **Hur, T.** Araujo, I. Park, D. (2023). "Neural Quantum Embedding: Pushing the Limits of Quantum Supervised Learning". (*Publication in progress*)

Presentations

- [1] "Neural Quantum Embedding" Plenary talk at *Quantum Techniques in Machine Learning* (QTML). Nov, 2023
- [2] "Neural Quantum Embedding" Poster presentation at *Asian Quantum Information Science Conference* (AQIS). Aug, 2023
- [3] "Neural Quantum Embedding" Poster presentation at *Joint Symposium on Quantum Computing* (JSQC). Aug, 2023
- [4] "Quantum Kernel Optimization via Deep Learning." *Electronics and Telecommunications Research Institute* (ETRI). Jan, 2023

Research Experiences

Neural Quantum Embedding

with Dr. Israel Araujo, Prof. Daniel Park

- Presented a novel and effective quantum embedding scheme for quantum machine learning by leveraging the power of classical neural network
- Demonstrated the effectiveness of the method with numerical simulations and IBM quantum hardwares
- Verified the effect of the method on trainability and generalization performances by analyzing local effective dimension and geometric difference

Jan. 2023 – Sept. 2023

Quantum Convolutional Neural Network

with Leeseok Kim, Supervisor: Prof. Daniel Park

- Investigated the performance of various Quantum Convolutional Neural Network (QCNN) designs for classical pattern recognition task
- Demonstrated the advantage of quantum machine learning models by comparing QCNN to its classical counterparts
- Paper accepted in Quantum Machine Intelligence

Simulating Non-Abelian Braiding Statistics

Supervisor: Dr. Derek Lee

- Studied braiding statistics of Non-Abelian Anyons for topological quantum computation
- Demonstrated the braiding simulation in a tri-junction using a pulse level control of a quantum circuit (*Qiskit Pulse*)

Other Experiences

IBM Quantum Leadership Training Program

IBM

July - August 2023

IBM T.J. Watson Research Center, NY

- Selected as one of only 15 participants nationwide for the prestigious Quantum Leadership Training Program at IBM's T.J. Watson Research Center
- · Acquired expertise in advanced Qiskit functionalities, including Qiskit Runtime, Dynamical Decoupling, and Probabilistic Error Cancellation, through direct mentorship from leading IBM researchers.

NTU-IBM Oiskit Hackathon

IBM / National Taiwan University

- Implemented quantum kernel optimization scheme by utilizing classical neural networks
- · Led and strategically organized a multidisciplinary team to achieve a third-place

Quantum Open Source Foundation (QOSF) Mentorship QOSF

- Benchmarked the performances of quantum machine learning models for image classification
- Contributed to the open-source community by publishing the code and authoring an introductory tutorial

2022 / 2021 QHACK

Xanadu

- Solved interesting QML problems such as weighted Max-Cut problem with QAOA and solving excited states of the Hamiltonian by utilizing Variational Multiclass Eigensolver
- QHACK 2022 Top 4 / 300
- QHACK 2021 Top 30 / 300

2021 / 2020 Oiskit Global Summer School

- IBM
 - · Studied expressibility of parameterized quantum models and their trainability issues with Barren Plateaus
 - Implemented advanced quantum learning models including Quantum Boltzmann Machine and Quantum Generative Adversarial Networks

NYU Deep Learning

NYU Center for Data Science

- · Learned inference framework of probabilistic learning models and energy based models
- Implemented variational autoencoders and Generative Adversarial Networks with PyTorch

References

[1] Prof. Kyungdeock Park, dkd.park@yonsei.ac.kr

- Assistant Professor at Department of Applied Statistics, Department of Statistics and Data Science, Yonsei University

March 2021 – Aug. 2021

Oct. 2021 – June 2022

March - June 2021

Feb 2022 / Feb 2021

July 2021 / July 2020

July - Sept 2021

Aug 2023

NTU, Taiwan